Compensating Acoustic Mismatch Using Class-Based Histogram Equalization for Robust Speech Recognition

نویسندگان

  • Youngjoo Suh
  • Sungtak Kim
  • Hoirin Kim
چکیده

A new class-based histogram equalization method is proposed for robust speech recognition. The proposed method aims at not only compensating for an acoustic mismatch between training and test environments but also reducing the two fundamental limitations of the conventional histogram equalization method, the discrepancy between the phonetic distributions of training and test speech data, and the nonmonotonic transformation caused by the acoustic mismatch. The algorithm employs multiple class-specific reference and test cumulative distribution functions, classifies noisy test features into their corresponding classes, and equalizes the features by using their corresponding class reference and test distributions. The minimum mean-square error log-spectral amplitude (MMSE-LSA)-based speech enhancement is added just prior to the baseline feature extraction to reduce the corruption by additive noise. The experiments on the Aurora2 database proved the effectiveness of the proposed method by reducing relative errors by 62% over the mel-cepstral-based features and by 23% over the conventional histogram equalization method, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Compensation with Class-based Histogram Equalization for Robust Speech Recognition

In this paper, a new method based on the class-based histogram equalization to compensate the acoustic mismatch between training and test conditions of speech recognizers is proposed. The proposed method improves the speech recognition accuracy in noisy environments by reducing two limitations of the conventional histogram equalization: The discrepancy of phonetic class distributions between tr...

متن کامل

Feature Compensation Combining SNR - Dependent Feature Reconstruction and Class Histogram Equalization

Youngjoo Suh et al. 753 ABSTRACT⎯In this letter, we propose a new histogram equalization technique for feature compensation in speech recognition under noisy environments. The proposed approach combines a signal-to-noise-ratio–dependent feature reconstruction method and the class histogram equalization technique to effectively reduce the acoustic mismatch present in noisy speech features. Exper...

متن کامل

Histogram Equalization Utilizing Window-Based Smoothed CDF Estimation for Feature Compensation

In this letter, we propose a new histogram equalization method to compensate for acoustic mismatches mainly caused by corruption of additive noise and channel distortion in speech recognition. The proposed method employs an improved test cumulative distribution function (CDF) by more accurately smoothing the conventional order statisticsbased test CDF with the use of window functions for robust...

متن کامل

On-line Parametric Histogram Equ for Noise Robust Embedded Sp

In this paper, two low-complexity histogram equalization algorithms are presented that significantly reduce the mismatch between training and testing conditions in HMM-based automatic speech recognizers. The proposed algorithms use Gaussian approximations for the initial and target distributions and perform a linear mapping between them. We show that even this simplified mapping can improve the...

متن کامل

Performance improvement of exemplar-based noise robust ASR using speaker normalization methods

The Automatic Speech Recognition (ASR) technology now has been proved to have desirable performance on an environment that is exactly the same as their observed in training the recognition model. The HMM is the most popular and successful stochastic approach to speech recognition in general use, due to the existence of elegant and efficient algorithms for both training and recognition. However,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • EURASIP J. Adv. Sig. Proc.

دوره 2007  شماره 

صفحات  -

تاریخ انتشار 2007